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Abstract 

 

 

This paper explores the possibility of weak identification in estimated Taylor rule 

regressions with interest rate smoothing. We argue that the presence of smoothing 

renders the information for the estimates of Taylor rule parameters dependent on its 

true value in such a way that as it approaches unity inference could be spurious. In 

the literature, quarterly estimates of the smoothing parameter are typically in the 

order of 0.7 – 0.9. Therefore, we conduct a series of Monte Carlo experiments for 

empirically relevant sample sizes and values of the smoothing coefficient. Our 

results show that the actual size of a nominal 5% test is always oversized, hitting 

rejection rates of up to 20%. Altogether, our results suggest that evidence supporting 

the Taylor Principle could be spurious. 
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1. Introduction 

 Examples and extensions of John Taylor’s (1993) monetary policy rule are now widespread 

in the empirical macro literature, and estimates of the Federal Reserve’s responses to changes in 

inflation expectations and the business cycle are ubiquitous. Arguably, much of the attention 

received by these simple rules is due to the fact that they describe the actual behavior of the 

federal funds rate surprisingly well. 

 However, recent research by Nelson and Startz (2007) and Ma and Nelson (2010) indirectly 

suggests that the form of the estimated Taylor rule in a nonlinear least squares (NLS) setting may 

be subject to weak identification. In the literature, forward-looking versions of the Taylor rule 

such as the one proposed by Clarida, Galí, and Gertler (2000) were usually estimated using the 

generalized method of moments (GMM), which requires instruments for the endogenous 

regressors.
1
 However, after Orphanides’ (2001, 2004) argument on the operational 

implementation of such rules which use ex-post data that was not available to policy makers in 

real time, the use of real-time data has become industry standard. This alleviates the need for 

instruments and allows Taylor rules to be estimated by least squares. This paper investigates 

whether Taylor rules suffer from weak identification in the presence of interest rate smoothing. 

In his seminal paper, Taylor (1993) proposed a feedback policy rule of the form: 

   
                       (1) 

where   
  is the target interest rate,    is the inflation rate,    is the target level of inflation,     is 

the output gap, and    is the long-run equilibrium real interest rate. Intuitively, this rule implies 

                                                 
1
 Mavroeidis (2010) examines the possibility of weak identification of Taylor rules in the context of a dynamic 

stochastic general equilibrium (DSGE) model and GMM estimation. 
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that the Fed raises the nominal interest rate when inflation rises above its target or when output is 

above its potential output.  

If we combine the parameters    and    into a single constant term, we can rewrite equation 

(1) as follows: 

   
                  (2) 

The condition that         is referred to as the Taylor Principle, and it implies that the Fed 

rises the nominal interest rate by more than point-for-point when inflation rises above target, so 

that the real interest rate rises. Notice that this condition has important stability connotations: if 

the Taylor Principle is satisfied and the Fed rises the nominal interest rate by more that point-for-

point so that the real interest rate increases, this leads to a negative output gap and, in turn, to a 

decrease in inflation.  

Clarida, Galí, and Gertler (2000) propose a forward-looking version of the simple Taylor 

rule. In particular, they consider an extension in which the Fed responds to expectations of 

current and future inflation: 

   
                      (3) 

where        is the expectation of the inflation rate at time t+h formed at time t. As argued by 

Orphanides (2001, 2004), in order for this policy rule to be operational, it requires information to 

be contemporaneously available to policy makers at the time decisions are made. Therefore, he 

promotes the use of real-time data which permits estimation of the parameters by nonlinear least 

squares. The use of real time data, and estimation of Taylor rules by NLS is now widespread. 
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Furthermore, researchers typically allow for partial adjustment or interest rate smoothing. 

The basic idea is that the federal funds rate may not adjust instantaneously towards its target 

level but rather in a gradual fashion. Therefore, we follow the literature in allowing for AR(1) 

smoothing so that the actual federal funds rate can be thought as: 

                 
      (4) 

Where   reflects the degree of smoothing. That is, the faster the response to shocks, the closer 

this parameter approaches to zero. 

Therefore, if we substitute equation (3) into (4), we arrive at the typical specification for the 

nominal interest rate: 

                                        (5) 

Consistent with a very slow adjustment, estimates of   for quarterly data are usually in the order 

of 0.7 – 0.9. However, we argue that the presence of smoothing renders the information for the 

estimates of the Taylor rule parameters dependent on   in such a way that as it approaches unity  

inference may be spurious. Nelson and Startz (2007) refer to this phenomenon as the Zero-

Information-Limit-Condition (ZILC). 

 The rest of the paper is organized as follows. In section 2, we present the basic model studied 

by Nelson and Startz (2007) and we summarize their main results. Section 3 examines smoothing 

by introducing an intermediate model that allows us to isolate its effects. In section 4 we 

augment the nonlinear model of Nelson and Startz (2007) to resemble a Taylor rule with interest 

rate smoothing. We demonstrate that the ZILC holds for nonlinear regression models with 

smoothing, in particular for empirically relevant sample sizes and values of the smoothing 
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parameter. Tests at the nominal 5% level are almost always oversized if 11  , i.e. when the 

Taylor Principle does not hold. Section 5 concludes. 

 

2. Nelson and Startz (2007): Overview 

 Consider the following nonlinear regression model studied by Nelson and Startz (2007), 

hereafter NS, where   is the parameter of interest: 

                 (6) 

The model is identified if    , and NS focus on the behavior of ̂  as   approaches zero. NS 

show that for Normal errors,   controls the amount of information about   in the data for a 

given sample size. In particular, the asymptotic variance of ̂  is proportional to    . They 

demonstrate that as   approaches zero, the information contained in ̂  goes to zero, and its 

variance diverges. If the regressors are standardized to have unit variance and correlation  , the 

asymptotic variance of ̂  is given by the following expression: 
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 In the limiting case that 0  the variance of ̂  becomes infinite. NS refer to this as the 

Zero-Information-Limit-Condition (ZILC) for ̂ . The information for ̂ , i.e., the inverse of its 

variance, is proportional to 2 . Since )ˆvar()ˆ( 22  E  if ̂  is unbiased, and the asymptotic 

variance of ̂  for standardized regressors becomes: 



 5 

 ,
)1(

1
)ˆvar(

2

2
















T
 (8) 

there will be an upward bias in estimating 2  when   is close to zero. This will cause the 

variance of ̂   to be downward biased. A natural measure of this overestimation of 2  is 

22 /)ˆ( E . To focus on how this ratio affects inference, we present some main results from NS 

for the case of 0  with standardized and uncorrelated regressors, and include 22 /)ˆ( E  for 

the various cases of   and T that they consider, and report them in Table 1.
2
   

 NS pay particular attention to the case when T = 100 and 01.0 , so that the model is 

identified, but only weakly. In this case 101/)ˆ( 22 E , estimated information for ̂   is twenty 

times larger than asymptotic information, and the estimated standard error is roughly four and a 

half times too small. Despite the spuriously precise standard error, empirical size of the t-test at 

the nominal 5% level is 0.001. In addition to these problems when 01.0 , the convergence of 

̂  and its t-statistic to their asymptotic distributions is quite slow. When T = 100,000 the 

standard error of ̂  is only slightly underestimated, which is reflected by the fact that the ratio

22 /)ˆ( E  drops to 1.1, but the empirical size of the t-test is roughly 1%. Even when T = 

1,000,000, the actual size is only 3.1%, demonstrating how slowly asymptotic theory kicks in. 

 The phenomenon of understated standard errors and small test size, which is most apparent 

when T = 100 and 01.0 , depends on the correlation, zero in this case, between tx  and tz . For 

                                                 
2
 Most of these results appear in Table 2 of Nelson and Startz (2007). 
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this particular pair of T and  , the t-test is undersized for values of ]
3

2
,

3

2
[ , and oversized 

outside of this range. 

 The highest value of 22 /)ˆ( E  reported by NS for uncorrelated regressors is for 01.0  

and 100T , and is again 101. It is obvious from equation (8) that as the correlation between 

regressors increases, the variance of ̂  increases. With 101 as a benchmark, this ratio is 

approximately 134, 230, and 527 for correlations of 0.5, 0.75, and 0.9 respectively, with the last 

two correlations resulting in oversized t-tests. 

 In the following two sections, we examine the extent to which more general models with 

smoothing are subject to weak identification and spurious inference. 

 

3. Simple Smoothing: An Intermediate Step 

 In order to isolate the effect of smoothing, we first consider the following intermediate 

model, which we refer to as simple smoothing: 

                      . (9) 

Notice that this model does not allow for a lagged dependent variable yet. In this case, the effect 

of smoothing is to lower the variance of ̂  to: 

          
  

 
 

 

      
  (10) 

 Overall, the effect of smoothing is to reduce the upward bias of , or equivalently 

the ratio 22 /)ˆ( E . In Table 2 we repeat a version of NS Table 2 for this simple smoothing 

2

0 )ˆ(  
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model.  The worst case benchmark from the basic NS model reduces to 51 from 101.  For 

correlations of 0.5, 0.75, and 0.9, the ratio takes on the values 58, 71, and 85, respectively. It is 

apparent that the presence of smoothing should mitigate the problem of underestimating the 

standard error of ̂ , and lead to tests with less size distortions than in the basic NS nonlinear 

model. 

 

4. A Nonlinear Regression Model with Smoothing 

 In order to determine whether estimated Taylor rules suffer from weak identification, we 

extend the model of NS to resemble a Taylor rule regression with interest rate smoothing. For 

simplicity, we consider the case in which the Fed focuses only on expected inflation while 

ignoring business cycle considerations. We can think of a such a model as follows: 

                     . (11) 

where the parameters in equation (5) are renamed so as to follow the notation of NS: )1(   , 

  )1( , and .0   

 Some differences between the models are worth noting.   appears twice on the right hand 

side of the regression and we have lagged ty  as a regressor, both due to smoothing. Unlike the 

model of NS, we do not need tx  to identify  , so it has been dropped to keep the model 

tractable. Dropping tx  leaves only one right hand side correlation to consider; that between tz  

and 1ty . 

 With Normal errors, it can be shown that the Information matrix for ̂  and ̂  is equal to: 
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with determinant  .22
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 ,
)(

21
)ˆvar(

2

2

2

2

yzzzzz

zzyzyy

mmm

mmm

T 


























  (13) 

and 

 .
)(

)ˆvar(
2

2

yzyyzz

zz

mmm

m

T 










  (14) 

 If we standardize the regressors, so that 1 zzyy mm  and yzm , where   is the 

correlation between tz  and ,1ty
 
we can rewrite the asymptotic variances as: 
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Notice that stationarity of the dependent variable implies an additional restriction for 2 . 

This becomes apparent when we take the variance on both sides of equation (11): 
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For the model to be stationary, we need that )var()var( 1 tt yy . Therefore, we can solve for 2  
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If we substitute for 2  into the equations from above, we get the following expressions: 
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and 

          
        

        
  

                

 
   (20) 

We can now begin to assess whether our model suffers from the ZILC. In particular, if we 

follow NS and take the limit of the variance of ̂  with respect to   as it approaches zero, we  can 

confirm our intuition that this nonlinear model with smoothing is affected by the ZILC. That is, 

                        . (21) 

Only in the extreme case in which      is our model not subject to the ZILC.  

Next, we focus on the variance of   . Two things are worth noticing. First, the asymptotic 

variance depends on the true value of  , just as the OLS intuition would suggest for the simple 

AR(1) model; i.e.,    is non pivotal. Second, the limit of this expression collapses to zero as   

approaches the ZILC point; i.e.,    is super-consistent. 
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We now consider a series of Monte Carlo experiments in order to determine the effect of   

and the sample size on the actual size of a nominal 5% test. In particular, we simulate data 

according to equation (11) for the case of uncorrelated regressors with unit variance, and setting 

  equal to zero. Table 3 presents the results for different values of γ and T.
3
  

In the first experiment, we set 99.0 and 100T  so that the model is well-identified. As 

one would expect, the median of estimated information and standard errors across simulations 

are close to asymptotic values and the size of the t-test is correct. Fixing the sample size, when 

we reduce   to 0.1, while estimated information and standard errors are still close to their 

asymptotic counterparts, the size of the t-test is seventeen times too small. This finding is 

consistent with NS, who find for this pair of   and T , there is offsetting co-variation in the 

numerator and the denominator of the test statistic. Large values of the numerator are 

accompanied by large values of the denominator, and vice-versa, so that the resulting test 

statistic is always small. However, this phenomenon disappears as the sample size increases. In 

particular, we find that when 1000T  the size of the t-test is approximately right. Finally, we 

set   to 0.01 and the effect of the ZILC becomes apparent: estimated information is too large, 

the estimated standard error is too small, and the size of the t-test is fifty times too small. In this 

case, the problem persists even for 000,10T  demonstrating that asymptotic theory takes hold 

very slowly for this model. Only with T = 100,000 observations does the size of the test match 

nominal size. 

We now consider the effect of correlation between the regressors on test size. Figure 1 shows 

the empirical size of a nominal 5% test using different values of   and T. Using T = 100, 

                                                 
3
 For this nonlinear regression model with smoothing we abandon the metric 

22 /)ˆ( E  as ̂  is no longer unbiased. 
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01.0 , and 0  as our benchmark case, Panel C of Figure 1 shows that the t-statistic is 

undersized for low correlations and oversized for high correlations, with rejection rates of up to 

50% in extreme cases.  The extreme rejection rates are not as high as in NS, and this is due to the 

effect of smoothing on the variance of ̂ . As T is increases to 1000 in Panel D, size is reduced, 

but the basic NS size “smile” is still present. In panel A, where 1.0  and T = 100, the increase 

in   leaves the basic message unchanged; the test is undersized for low correlations, and 

oversized for high correlations. When T is increased to 1000 in Panel B, the test is approximately 

correctly sized for most correlation values.   

For their nonlinear model, NS focused on the case where 0 . For our nonlinear 

smoothing model, if we are to think of it as a Taylor rule regression, a more empirically relevant 

value of   is unity. In this case, the Federal Reserve changes the nominal rate point-for-point in 

response to changes in inflation, leaving the real interest rate unchanged. If 1 , the Fed allows 

the real interest rate to fall when inflation increases, and if 1  the Fed increases the nominal 

rate by more than point-for-point, increasing the real interest rate, and satisfying the Taylor 

Principle.    

In many cases of estimated Taylor rules, the null hypothesis of 1  is rejected in favor of 

the alternative that the Fed follows the Taylor Principle. In order to assess whether or not these 

rejections are the result of weak identification of Taylor rule regressions, we generate artificial 

data for empirically relevant values of   and T, and setting 1 . The results for uncorrelated 

regressors with unit variance are presented in Table 4.  

In the first experiment, we set   to 0.5 and T = 50 so that the model is identified. 

Consistently, the size of the t-test is approximately correct. Fixing the sample size, when we 
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reduce the value of   to 0.2 the problem begins to manifest itself. While estimated information 

and standard errors are close to asymptotic values, the size of the t-test is roughly two and a half 

times too high. The problem persists even for T = 250, and size only converges with T = 1000 – a 

sample size that is unrealistically high if we are to think of estimating monetary policy rules. As 

we further reduce the value of   to 0.1, the ZILC appears to hold: estimated information is too 

large, standard errors too small, and the size of the t-test is three times too high. Only when T = 

1000 does the size of the test match nominal size. Finally, we consider the extreme case of 

01.0 and T = 50. In this case, estimated information is four times larger than asymptotic 

information, standard errors are two times too small, and the rejection rate increases to 20%. 

Notice that for this small value of  , the problem persists even for T = 1000! 

Figures 2 – 5 show the effect of correlation on the size of the t-test for different values of   

and T. We should note here that the size “smile” of NS does not generalize to the case of .1   

While we do not report the results here, the size curve of the NS nonlinear regression model for 

non-zero values of   is often completely above the 5% line, especially for values of   greater 

than unity. This finding is consistent with our results, as the t-test appears to be oversized over 

the whole range of correlations when the ZILC is met.  

In Figure 2, 5.0 so that the model is identified. Consistently, we find that that ̂  does not 

suffer from ZILC when T = 50. Moreover, the size of the t-test is almost 5% for virtually all 

correlations. 

In Figure 3, 2.0 , which corresponds to a smoothing coefficient of 0.8, and the sample 

size ranges from 50 to 1000. For T = 50 and 100, we see that the size of the t-test is always too 
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high,  often twice nominal size. For T = 250, the problem begins to disappear, and for T = 1000 

size is approximately correct except for extreme negative correlations. 

In Figure 4, 1.0 , and the problem worsens. For T = 50 and 100, empirical size is now 

much higher than nominal size, often 3 to 4 times too large. Again, the problem begins to 

mitigate for T = 250, and is almost gone for T = 1000. 

In Figure 5, we consider the extreme case that 01.0 . Here the problem is quite serious.  

For sample sizes of 50 and 100, empirical size routinely exceeds 20%. Even with 1000 

observations, test size is rarely below 10%. 

Altogether, our results suggests that an econometrician estimating Taylor rules with interest 

rate smoothing may spuriously find evidence supporting the Taylor Principle as t-tests appear to 

be oversized for empirically relevant sample sizes and values of the smoothing parameter. 
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5.   Conclusion 

This paper examines whether estimated Taylor rules suffer from weak identification in a 

nonlinear least squares setting. To address this issue, we extend the basic nonlinear model of 

Nelson and Startz (2007) to resemble a Taylor rule regression with interest rate smoothing. We 

demonstrate that the Zero-Information-Limit-Condition holds for this model; in particular, we 

show that the inverse of the asymptotic variance of Taylor rule estimates goes to zero as the 

smoothing parameter approaches unity. Quarterly estimates of this parameter are typically within 

the range 0.7 – 0.9, which suggests that estimated Taylor rules could be affected by weak 

identification. 

We complement this analysis with a series of Monte Carlo experiments. In particular, we 

generate artificial data according to the nonlinear regression model with smoothing presented in 

section 4, and fixing the parameter of interest – i.e., that resembling the Taylor Principle – to 

unity. This allows us to assess whether or not the rejections of the null hypothesis that this 

parameter equals unity are spurious. Overall, our results show that for empirically relevant 

sample sizes and values of the smoothing parameter, estimated information is too large, the 

standard errors too small, and t-statistics oversized.  
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Figure 1 - Actual Size of a Nominal 5% Test, β=0. 
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Figure 2 - Actual Size of a Nominal 5% Test, γ=0.5, β=1, and T=50. 
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Figure 3 - Actual Size of a Nominal 5% Test, γ=0.2 and β=1. 
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Figure 4 - Actual Size of a Nominal 5% Test, γ=0.1 and β=1. 
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Figure 5 - Size of a Nominal 5% Test, γ=0.01 and β=1. 
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Table 1 – Nelson and Startz Model 

Sampling distributions for non-linear regression 

             

γ T 
Information     Standard error of    

Freq.           22 /)ˆ( E  
Asy. Median Asy. Median 

1 100 100 108 0.10 0.10 0.048 1.01 

0.1 100 1 0.88 1 1.32 0.001 2 

0.1 1000 10 9.30 0.32 0.33 0.016 1.10 

0.1 10,000 100 100 0.10 0.10 0.045 1.01 

0.01 100 0.01 0.20 10 1.95 0.001 101 

0.01 1000 0.10 0.26 3.16 1.97 0.000 11 

0.01 10,0000 10 9.05 0.32 0.33 0.018 1.10 

0.01 1,000,000 100 100 0.10 0.10 0.053 1.01 
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Table 2 – Simple Smoothing Model 

Sampling distributions for non-linear regression 

             

γ T 
Information     Standard error of    

Freq.           22 /)ˆ( E  
Asy. Median Asy. Median 

1 100 100 99 0.10 0.10 0.054 1.01 

0.1 100 1 0.81 1 1.11 0.001 1.50 

0.1 1000 10 9.61 0.32 0.32 0.025 1.05 

0.1 10,000 100 99.29 0.10 0.10 0.047 1.01 

0.01 100 0.01 0.09 10 3.26 0.001 51 

0.01 1000 0.10 0.14 3.16 2.67 0.000 6 

0.01 10,0000 10 10.03 0.32 0.32 0.042 1.05 

0.01 1,000,000 100 99.54 0.10 0.10 0.031 1.01 
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Table 3 – Nonlinear Regression Model with Smoothing 

Sampling distributions for non-linear regression 

             

γ T 
Information     Standard error of    

Freq.            
Asy. Median Asy. Median 

0.99 100 98.02 94.76 0.10 0.10 0.052  

0.1 100 5.26 5.18 0.44 0.44 0.003  

0.1 1000 52.63 51.44 0.14 0.14 0.049  

0.01 100 0.50 0.82 1.41 1.10 0.001  

0.01 1000 5.03 4.94 0.45 0.43 0.004  

0.01 10,000 50.25 50.56 0.14 0.14 0.036  

0.01 100,000 502.51 502.17 0.04 0.04 0.049  
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Table 4 – Nonlinear Regression Model with Smoothing 

Sampling distributions for non-linear regression 

             

γ T 
Information     Standard error of    

Freq.            
Asy. Median Asy. Median 

0.5 50 12.50 11.67 0.28 0.29 0.054  

0.2 50 3.13 3.39 0.57 0.54 0.128  

0.2 100 6.25 6.59 0.40 0.39 0.095  

0.2 250 15.63 15.83 0.25 0.25 0.058  

0.2 1000 62.50 63.17 0.13 0.13 0.057  

0.1 50 1.39 1.74 0.85 0.76 0.154  

0.1 100 2.78 3.31 0.60 0.55 0.118  

0.1 250 6.94 7.37 0.38 0.37 0.074  

0.1 1000 27.78 27.93 0.19 0.19 0.052  

0.01 50 0.13 0.56 2.81 1.34 0.209  

0.01 100 0.25 0.60 1.99 1.29 0.178  

0.01 250 0.63 1.16 1.26 0.93 0.177  

0.01 1000 2.53 3.38 0.63 0.54 0.123  

 


